AI Agents
Create sophisticated AI agents with unique personalities, contextual awareness, and emotional intelligence. Learn how to configure and customize agents for various use cases.
Creating Basic Agents
Start with a simple agent configuration:
basic_agent.py
123456789101112131415161718
from voxin import Agent# Create a basic AI agentagent = Agent( name="Support Assistant", description="A helpful customer support agent", personality_traits={ "friendliness": 0.9, "professionalism": 0.8, "patience": 0.9 })# Start handling interactions@agent.on_messageasync def handle_message(message): response = await agent.generate_response(message) await agent.send_message(response)
Core Features
- ✓ Message handling
- ✓ Basic personality traits
- ✓ Response generation
- ✓ Event system
Context & Memory
Enable contextual awareness and memory:
context_memory.py
12345678910111213141516171819202122232425
# Configure memory and contextagent = Agent( name="Sales Agent", memory_config={ "memory_type": "conversational", "max_tokens": 2000, "retention_period": "24h" })# Access and update context@agent.on_messageasync def handle_with_context(message): # Retrieve relevant context context = await agent.get_context(message) # Generate contextual response response = await agent.generate_response( message, context=context, include_memory=True ) # Update conversation memory await agent.update_memory(message, response)
Memory Types
- ✓ Conversational memory
- ✓ Long-term knowledge base
- ✓ Episodic memory
- ✓ Semantic networks
Personality & Emotions
Create agents with distinct personalities and emotional intelligence:
personality.py
123456789101112131415161718192021222324252627
from voxin import PersonalityTraits, EmotionEngine# Define agent personalitypersonality = PersonalityTraits( base_traits={ "openness": 0.8, "conscientiousness": 0.9, "extraversion": 0.7, "agreeableness": 0.85, "neuroticism": 0.3 }, voice_characteristics={ "tone": "friendly", "speaking_pace": "moderate", "expressiveness": "high" })# Create emotionally intelligent agentagent = Agent( name="Empathy Coach", personality=personality, emotion_engine=EmotionEngine( emotion_recognition=True, adaptive_responses=True ))
Best Practices
- ✓ Define clear agent roles and responsibilities
- ✓ Implement proper error handling
- ✓ Monitor agent performance
- ✓ Regular context cleanup
- ✓ Test agent responses thoroughly